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We present a method for optimization of the technique of adiabatic passage between two quantum states

by composite sequences of frequency-chirped pulses with specific relative phases: composite adiabatic

passage (CAP). By choosing the composite phases appropriately the nonadiabatic losses can be canceled

to any desired order with sufficiently long sequences, regardless of the nonadiabatic coupling. The values

of the composite phases are universal for they do not depend on the pulse shapes and the chirp. The

accuracy of the CAP technique and its robustness against parameter variations make CAP suitable for

high-fidelity quantum information processing.
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Introduction.—Adiabatic passage (AP) techniques are
a popular tool for coherent control of quantum systems
due to their simplicity and insensitivity to variations in
experimental parameters [1]. During adiabatic evolution,
the system follows an eigenstate of the Hamiltonian—
adiabatic (dressed) state. If the Hamiltonian is time depen-
dent this adiabatic state can be made to connect different
diabatic (bare) states, and thereby produce population
transfer. A variety of adiabatic techniques have been
proposed and demonstrated, including rapid adiabatic
passage [2], Stark-chirped rapid adiabatic passage [3],
retroreflection-induced bichromatic adiabatic passage [4],
superadiabatic passage [5], piecewise adiabatic passage
[6], stimulated Raman adiabatic passage, and its variations
[7]. In rapid adiabatic passage, which is the oldest and
simplest member of this family, the transition frequency of
the two-state system and the carrier frequency of the driv-
ing external coherent field cross at some instant of time. A
level crossing is created either by variation of the transition
frequency (e.g., by Zeeman or Stark shifts) or by variation
of the field frequency (e.g., by frequency chirping). This
energy crossing, combined with adiabatic evolution, leads
to population transfer between the two quantum states.

In nearly all AP techniques the population transfer is
incomplete, with efficiency close to, but less than, 1. In
the traditional branches of quantum physics a fidelity of
90%–95% usually suffices. However, in quantum informa-
tion processing a much higher fidelity is needed, with an
admissible error at most 10�4 [8]. Several methods for
optimization of AP have been proposed, e.g., with fields
that produce parallel eigenenergies [9], or additional fields
that cancel the nonadiabatic coupling [10].

In this Letter, we propose a method for optimization of
AP, which uses composite pulse sequences—composite
adiabatic passage (CAP)—in which the single pulse driv-
ing the quantum transition is replaced by a sequence
of pulses with well-defined relative phases. A suitable
choice of these phases allows various imperfections in the

inversion profile to be compensated to any desired order,
without even knowing the magnitude of the errors.
Composite pulses.—Composite pulses, which generalize

the concept of spin echo [11], have been invented in
nuclear magnetic resonance (NMR) [12]. The available
methods for construction of composite pulses use the in-
tuitive notion of geometric rotations in the Bloch vector
picture and they are applicable to pulses of rectangular
temporal shape and constant detuning. Such shapes are
adequate in NMR [12] and in atomic excitation with micro-
second laser pulses [13], but cannot be used for pulses of
smooth shapes and/or time-dependent detuning. Recently,
an SU(2) algebraic approach has been developed for the
design of composite sequences of pulses with smooth
temporal shapes and constant detuning [14]. Here we use
this approach to construct composite pulses with chirped
detuning, which allows us to optimize adiabatic passage
through a level crossing.
A two-state quantum system driven by an external co-

herent field is described by the Schrödinger equation,

i@@tcðtÞ ¼ HðtÞcðtÞ; (1)

where cðtÞ ¼ ½c1ðtÞ; c2ðtÞ�T is a vector column with the
probability amplitudes of the two states jc 1i and jc 2i.
The Hamiltonian after the rotating wave approxima-

tion [15] is HðtÞ ¼ ð@=2Þ�ðtÞe�iDðtÞjc 1ihc 2j þ H:c: with
D ¼ R

t
0 �ðt0Þdt0, where � ¼ !0 �! is the detuning be-

tween the field frequency ! and the Bohr transition fre-
quency !0, and �ðtÞ is the Rabi frequency, which
quantifies the field-system interaction. The evolution of
the quantum system is described by the propagator U,
which connects the probability amplitudes at time t to their
initial values at time ti: cðtÞ ¼ Uðt; tiÞcðtiÞ. It is parame-
trized by the Cayley-Klein parameters a and b,

U ¼ a b
�b� a�

� �
: (2)
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The transition probability is p ¼ jbj2 ¼ 1� jaj2. A con-
stant phase shift � in the driving field, �ðtÞ ! �ðtÞei�,
is mapped onto the propagator as

U � ¼ a be�i�

�b�ei� a�

" #
: (3)

For experimental convenience, it is preferable to take all
constituent pulses the same, with the same shape, width,
peak Rabi frequency, detuning, and chirp, and leave only
their phases different. This restriction greatly simplifies the
derivation; it is not, however, mandatory for the CAP
technique. A composite sequence of N identical pulses,
each with a phase �k, produces the overall propagator

U ðNÞ ¼ U�N
U�N�1

� � �U�2
U�1

: (4)

The composite phases �k (k ¼ 1; 2; . . . ; N) are control
parameters, which are fixed by requiring a specific excita-
tion profile. Because the overall phase does not affect the
excitation profile, one of these phases can be set to zero.
It is also convenient to have the ‘‘anagram’’ condition
HkðtÞ ¼ HNþ1�kðtÞ (k ¼ 1; 2; . . . ; bN=2c). For a composite
sequence of 2nþ 1 pulses, we find �1 ¼ �2nþ1 ¼ 0
and we are left with n independent phases: �2 ¼ �2n,
�3 ¼ �2n�1; . . . ; �n ¼ �nþ2, and �nþ1. We note that if
a set of phases f�kgnþ1

k¼2 is a solution to the control problem

then the set f��kgnþ1
k¼2 is also a solution. All phases are

determined with modulo 2�; hence the set f2���kgnþ1
k¼2

is another solution.
Composite phases.—We consider a model in which the

Rabi frequency �ðtÞ is an even function of time and the
detuning �ðtÞ is odd,

�ðtÞ ¼ �ð�tÞ; �ðtÞ ¼ ��ð�tÞ: (5)

Then the Cayley-Klein parameter a in the propagator (2)
is real, a 2 R [16]. For a three-pulse sequence, with

phases (0, �, 0), we find from Eq. (4) that Uð3Þ
11 ¼ a3 �

ajbj2ð1þ 2 cos�Þ. The choice � ¼ 2�=3 annuls the sec-

ond term: Uð3Þ
11 ¼ a3; then Uð3Þ

11 and its first two derivatives
vanish at the point where a ¼ 0, thereby making the exci-
tation profile more robust to variations in the pulse area
around this point. Because the dependence on � factorizes

in the second term of Uð3Þ
11 , the composite phase� ¼ 2�=3

does not depend on � and �. For a sequence of five

pulses with phases (0, �2, �3, �2, 0), we find Uð5Þ
11 ¼

a5 � 2a3jbj2½1 þ 2 cos�2 þ cosð�2 � �3Þ þ cos�3�þ
ajbj4½1 þ 2 cosð�2 � �3Þ þ 2 cosð2�2 � �3Þ�. Again,
we can choose the phases �2 and �3 such that they nullify

all but the first term: Uð5Þ
11 ¼ a5. This corresponds to nulli-

fying Uð5Þ
11 and its first four derivatives in the point where

a ¼ 0. One solution is (�2 ¼ 4�=5, �3 ¼ 2�=5).
This idea can be generalized for pulse sequences, con-

taining N ¼ 2nþ 1 pulses. In this case, choosing the

phases appropriately, we have UðNÞ
11 ¼ aN , which leads to

transition probability p ¼ 1� a2N . Since for the model (5)

we have a 2 ½�1; 1�, then p ! 1 for N ! 1, except for
resonant even-� pulses, where a ¼ �1. In particular, for
a sequence of N resonant (� ¼ 0) pulses, we obtain p ¼
1� cosðA=2Þ2N , which tends to 1 for large N regardless of
the pulse area A, except for A equal to even integers of �.
We have derived a general analytic formula for the phases
of a composite sequence of N pulses, which optimizes AP
against variations in the pulse area and the chirp rate,

�ðNÞ
k ¼

�
N þ 1� 2

�
kþ 1

2

���
k

2

�
�

N
; (6)

where k ¼ 1; 2; . . . ; N and the symbol bxc denotes the floor
function (the integer part of x). These ‘‘magic’’ phases can
be used to produce an arbitrarily accurate population in-
version. The remarkable simplicity of the analytic expres-
sion (6) for the composite phases may have an underlying
simple geometric interpretation.
Examples.—The exactly soluble Demkov-Kunike (DK)

model [17] assumes a sech pulse shape and a tanh fre-
quency chirp added to a static detuning �0,

�ðtÞ ¼�0sechðt=TÞ; �ðtÞ ¼ �0 þB tanhðt=TÞ; (7)

where �0, �0, and B are constant parameters with
the dimension of frequency, and T is the pulse width.
For �0 ¼ 0 (no static detuning) the DK model reduces to
the Allen-Eberly (AE) model [18], which obeys the con-
ditions (5), while for B ¼ 0 (no chirp) it reduces to the
Rosen-Zener model [19]. The Cayley-Klein parameter a in
the DK model is expressed by Gamma functions,

a ¼ �ð�Þ�ð�� ���Þ
�ð�� �Þ�ð���Þ ; (8)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p � i�, � ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p � i�, and
� ¼ 1

2 þ ið�� �Þ, with � ¼ �0T=2, � ¼ BT=2, and

� ¼ �0T=2. The transition probability p ¼ 1� jaj2 is

p ¼ 1� coshð2��Þ þ cosð2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p Þ
coshð2��Þ þ coshð2��Þ : (9)

A transition probability p ¼ 1 is obtained for � ¼ 0 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p ¼ nþ 1
2, with n ¼ 0; 1; 2; . . . . The transition

probability tends to unity also in the adiabatic limit
(�> j�j � 1) for � ¼ 0. However, if the chirp � is not
large enough, nonadiabatic oscillations versus � appear
and the probability is reduced. These oscillations can be
suppressed to any order by composite pulses.
Figure 1 shows the dramatic improvement of adiabatic

passage with composite pulses. Frames (a) and (b) show
that a five-pulse CAP with sech-tanh shapes suffices to
suppress the nonadiabatic oscillations below the quantum
information benchmark 10�4. Frames (c) and (d) show the
optimization of AP for the experimentally more common
situation of a Gaussian pulse with linear chirp, for which
only an approximate analytic solution is known [20];
because conditions (5) are satisfied the composite phases
are given by Eq. (6). The reduction of the nonadiabatic
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losses is not as high as for sech pulses because Gaussian
pulses are less adiabatic [20]; however, the 10�4 error
benchmark can still be reached, albeit with longer sequen-
ces. We point out that the composite phases (6) are appli-
cable to other pulse shapes and chirps with the symmetry
property (5), e.g., the Landau-Zener model [21] in its finite
version [22].

We note that the compensation of nonadiabatic losses
does not occur merely due to increased overall pulse area
of the composite sequence. For example, the fidelity of the
five-pulse CAP in Fig. 1 cannot be obtained with a single
sech-tanh pulse with a 5 times larger area. Moreover, in an
experiment it is often preferable, and more feasible, to use
a sequence of pulses with a smaller area rather than a single
pulse with a large area.

Another experimental issue is the conditions for equal
pulse areas and symmetric pulse shapes. We include in
Fig. 1(b) a curve with a 1% random error in the individual
pulse areas; the infidelity remains close to the 10�4 bench-
mark. We further show in Fig. 1(d) a curve for asymmetric
pulse shapes; we see that a small (5%) asymmetry does not
affect the CAP technique significantly. For larger asymme-
try the composite phases can always be calculated numeri-
cally; they may differ from the ones prescribed by us for
symmetric pulses but the respective sequences should
perform equally well.

The fidelity of the CAP technique is further illustrated
in Fig. 2 versus �0 and the chirp rate B. CAP greatly
enhances the robustness of the transition probability

against variations of �0 and B and achieves ultrahigh
fidelity even for moderate parameter values and a small
number of constituent pulses.
The CAP technique must not be confused with the

technique of piecewise adiabatic passage (PAP) [6], which
also uses a sequence of phased pulses. PAP requires a large
number of pulses, each of which produces a perturbatively
small change in the populations, whereas CAP works for
an arbitrary number of pulses and each pulse produces a
large population change. Moreover, PAP demands phases
that change quadratically from pulse to pulse, which trans-
late into a linear chirp for a large number of pulses; the
population evolution is a piecewise version of the one for
standard single-pulse AP. In CAP the composite phases
are derived from the condition to cancel the deviations
from unit transfer efficiency due to nonadiabatic effects
by enforcing destructive interference of these deviations.
Figure 3 shows an example of population evolution during
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FIG. 2 (color online). Transition probability vs peak Rabi
frequency and chirp rate for a single AE pulse (top) and for a
five-pulse composite sequence with phases (0, 4�=5, 2�=5,
4�=5, 0) (bottom).
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FIG. 1 (color online). Transition probability vs peak Rabi
frequency for a single pulse, and for N-pulse composite sequen-
ces (with N denoted on the curves) with phases from Eq. (6),
assuming (a) sech-tanh pulses for chirp rate B ¼ 1=T;
(c) Gaussian pulses, �ðtÞ ¼ �0e

�t2=T2
, with a linear chirp,

�ðtÞ ¼ Ct, with C ¼ 2=T2. Frames (b) and (d) show the infidel-
ities of the respective upper profiles. The dashed curve in frame
(b) is for pulse areas with a random error of 1% in the five-pulse
sequence. The dashed curve in frame (d) is for an asymmetric
pulse shape, �ðtÞ ¼ �0e

�t2=T2 ½1þ tanhðt=TÞ=20�.
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FIG. 3 (color online). Transition probability vs time for a
sequence of five pulses with Gaussian pulse shape, �nðtÞ ¼
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CAP, in which each constituent pulse produces a large
population change but not complete inversion; the destruc-
tive interference of the deviations drives the system to
complete inversion in the end.

Hitherto we have used the CAP technique to stabilize the
transfer efficiency against variations in the pulse area and
the chirp rate. The CAP technique can also optimize the
excitation with respect to the static detuning �0, which
leads to a deviation from the odd property of �ðtÞ. To this
end, we take the expansion of the propagator versus �0

around the point �0 ¼ 0 and choose again the composite

phases such that the first few derivatives of UðNÞ
11 vanish.

Figure 4 illustrates the stabilization of the transition proba-
bility versus �0 achieved with composite sequences of
three and five pulses. The width of the high-fidelity range,
with an error below the 10�4 benchmark, increases from
0:02=T for a single pulse to 0:32=T for three pulses and
0:75=T for five pulses.

Conclusions.—The proposed CAP technique is a simple
and efficient method for optimization of adiabatic passage
by using composite pulse sequences. It allows one to
suppress the nonadiabatic oscillations in the transition
probability and to reduce the error below the 10�4 quantum
computation benchmark, even with simple three- and five-
pulse composite sequences. It is particularly important that
the composite phases do not depend on the specific pulse
shape and chirp as long as the latter satisfy the symmetry
property (5). These features make the CAP technique a
potentially important tool for ultrahigh-fidelity quantum
information processing.
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